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Motivation & Societal Impact
• Higher Autonomy is a primary goal for transportation sys-

tems of future cities.

• Problem: Most autonomy systems rely on AI models for crit-
ical perception tasks.

• AI in Transportation Trade-off:

Promises of AI Perception
✓ High performance in

complex urban settings.
✓ Superior recognition of

signs & signals.

Risks of Deployment
. Unpredictability in edge-

cases.
. lack of of formal verifica-

tion.
. Major risks for deploy-

ment on safety-critical
systems.

My research is motivated by the critical need to bridge the
gap between AI-based perception modules and their safety
verification when deployed in autonomous vehicles.

• Neural ODE (Chen et al. 2018) are commonly described as a
continuous-depth generalization (Sayed et al. 2025a) of a discrete
ResNet (He et al. 2016).

• Neural ODE have gained prominence in time-series model-
ing over discrete neural networks (kidger, 2021).

• Neural ODE Verification Gap: Current methods are under-
developed (Lopez et al. 2022), and existing methods are computation-
ally intensive (Sayed et al. 2025b).

– We provide novel methods and light weight tools based
on reachability analysis to analyze and verify safety
properties of neural ODE.

– We combine continuous AI/neural ODE models,
reachability analysis methods to analyze such mod-
els, with the final objective of verifying safety of AI
mdoels utilized by autonomous vehicles.
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Future Research Directions
• Scalability to other architectures Extending the framework

in R.D 1 to handle more neural network architectures (e.g.,
RNN and CNN).

• Uncertainty quantification Moving from deterministic
ODEs to Stochastic Differential Equations (SDEs) to model
sensor noise and environmental unpredictability.

• Closed-loop verification Verifying the safety of the entire
autonomous loop by integrating the neural ODE perception
module with the vehicle’s control policy.

• Real-time verification Optimizing verification algorithms to
run efficiently on embedded hardware for adaptive mission
planning.
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Thesis Contributions
1. R.D 1: Formal relationships between neural networks and neural ODE

(Sayed et al. 2025a)

• Rigorous error bound (ε) on the approximation error between neural ODE
and ResNet.

• Tighter Ωε over-approximation < 16 million times×SOTA (Sander et al. 2022).
• Verification proxy to verify one model based on the reachable set of the

other ± Ωε.
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2. R.D 2: Safety verification of neural ODE based on reachability analysis
methods (Sayed et al. 2025b)

• Reachability analysis of neural ODE based on continuous-time mixed
monotonicity.

• Light weight reachability analysis methods for scalable verification.
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3. R.D 3: Verification toolbox for neural ODE
• Iterative refinement approach for neural ODE input set.
• Benchmarking with other neural ODE verification tools.
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4. Verification and testing on autonomous underwater vehicles (AUVs)
• Robustness verification for ROI from in situ images.
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