

Motivation & Societal Impact

- Higher Autonomy** is a primary goal for transportation systems of future cities.
- Problem:** Most autonomy systems rely on **AI models** for critical perception tasks.
- AI in Transportation Trade-off:**

Promises of AI Perception

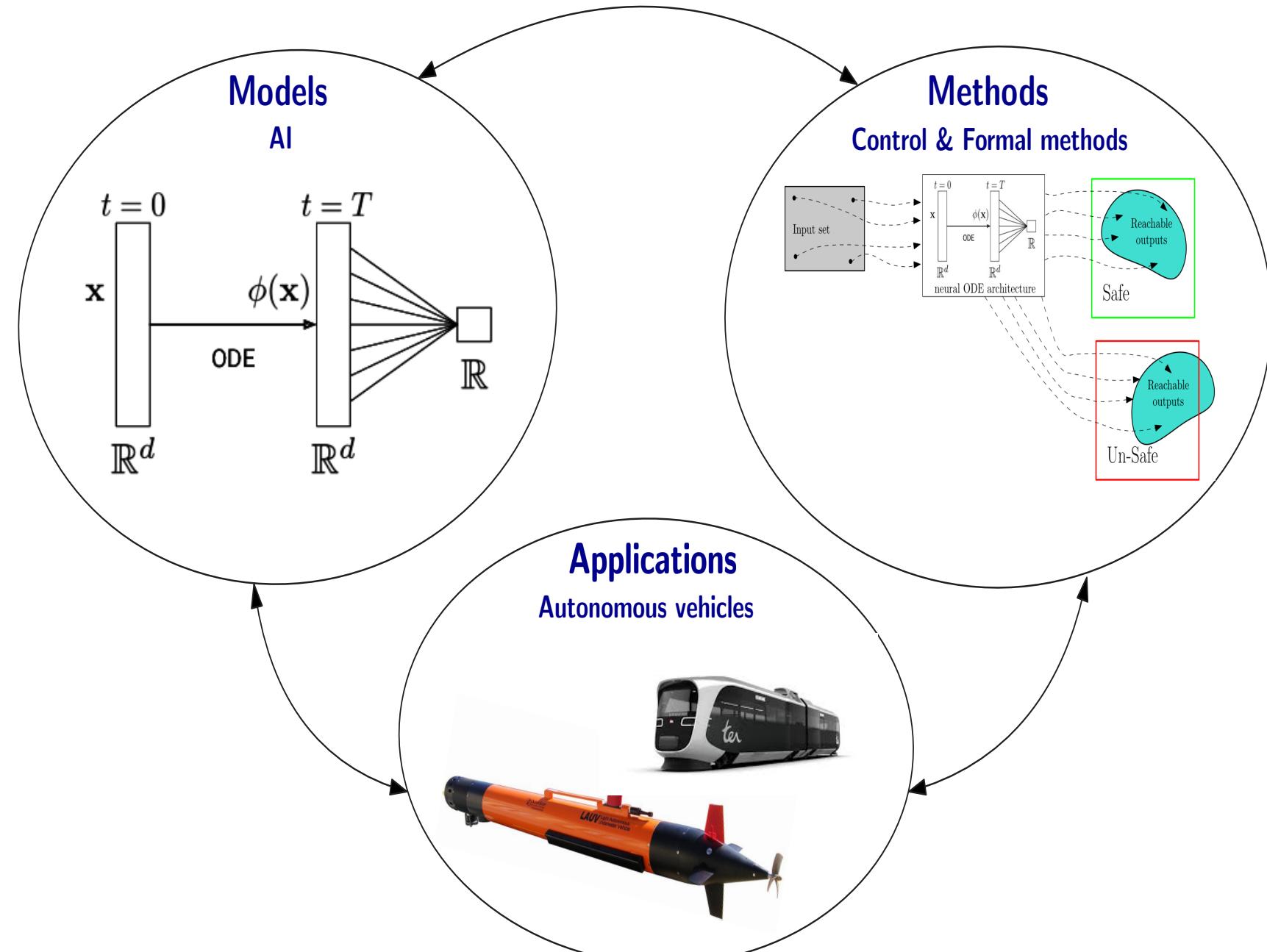
- ✓ High performance in complex urban settings.
- ✓ Superior recognition of signs & signals.

Risks of Deployment

- ⚠ Unpredictability in edge-cases.
- ⚠ lack of formal verification.
- ⚠ Major risks for deployment on safety-critical systems.

My research is motivated by the critical need to bridge the gap between AI-based perception modules and their safety verification when deployed in autonomous vehicles.

- Neural ODE** (Chen et al. 2018) are commonly described as a **continuous-depth** generalization (Sayed et al. 2025a) of a discrete **ResNet** (He et al. 2016).
- Neural ODE** have gained prominence in **time-series** modeling over discrete neural networks (Kidger, 2021).
- Neural ODE Verification Gap:** Current methods are **under-developed** (Lopez et al. 2022), and existing methods are **computationally intensive** (Sayed et al. 2025b).
 - We provide novel methods and light weight tools based on reachability analysis to **analyze and verify safety properties of neural ODE**.
 - We combine **continuous AI/neural ODE** models, **reachability analysis** methods to analyze such models, with the final objective of **verifying safety of AI models utilized by autonomous vehicles**.



Future Research Directions

- Scalability to other architectures** Extending the framework in **R.D 1** to handle more neural network architectures (e.g., RNN and CNN).
- Uncertainty quantification** Moving from deterministic ODEs to **Stochastic Differential Equations (SDEs)** to model sensor noise and environmental unpredictability.
- Closed-loop verification** Verifying the safety of the entire autonomous loop by integrating the neural ODE perception module with the vehicle's control policy.
- Real-time verification** Optimizing verification algorithms to run efficiently on embedded hardware for **adaptive mission planning**.

References

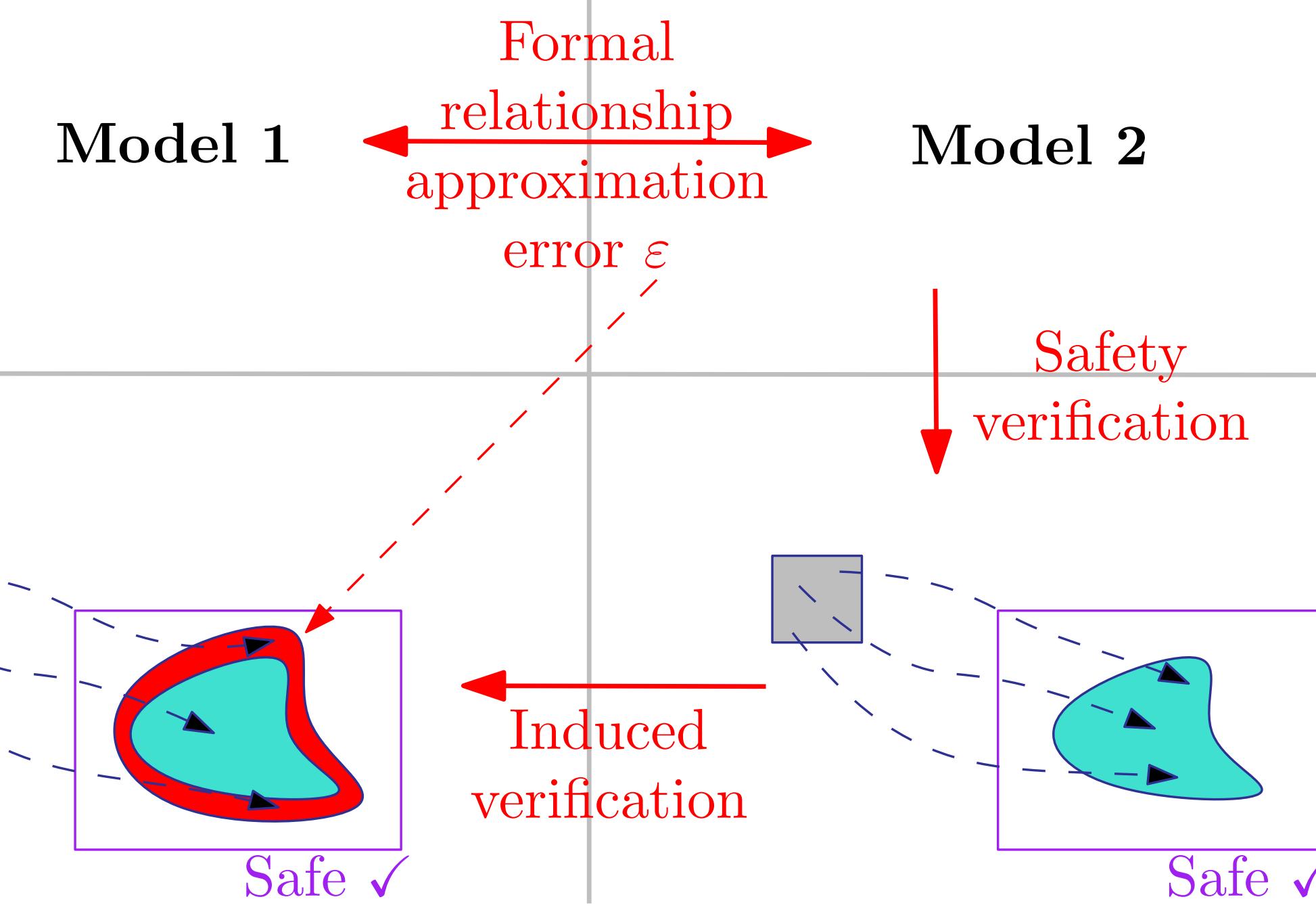
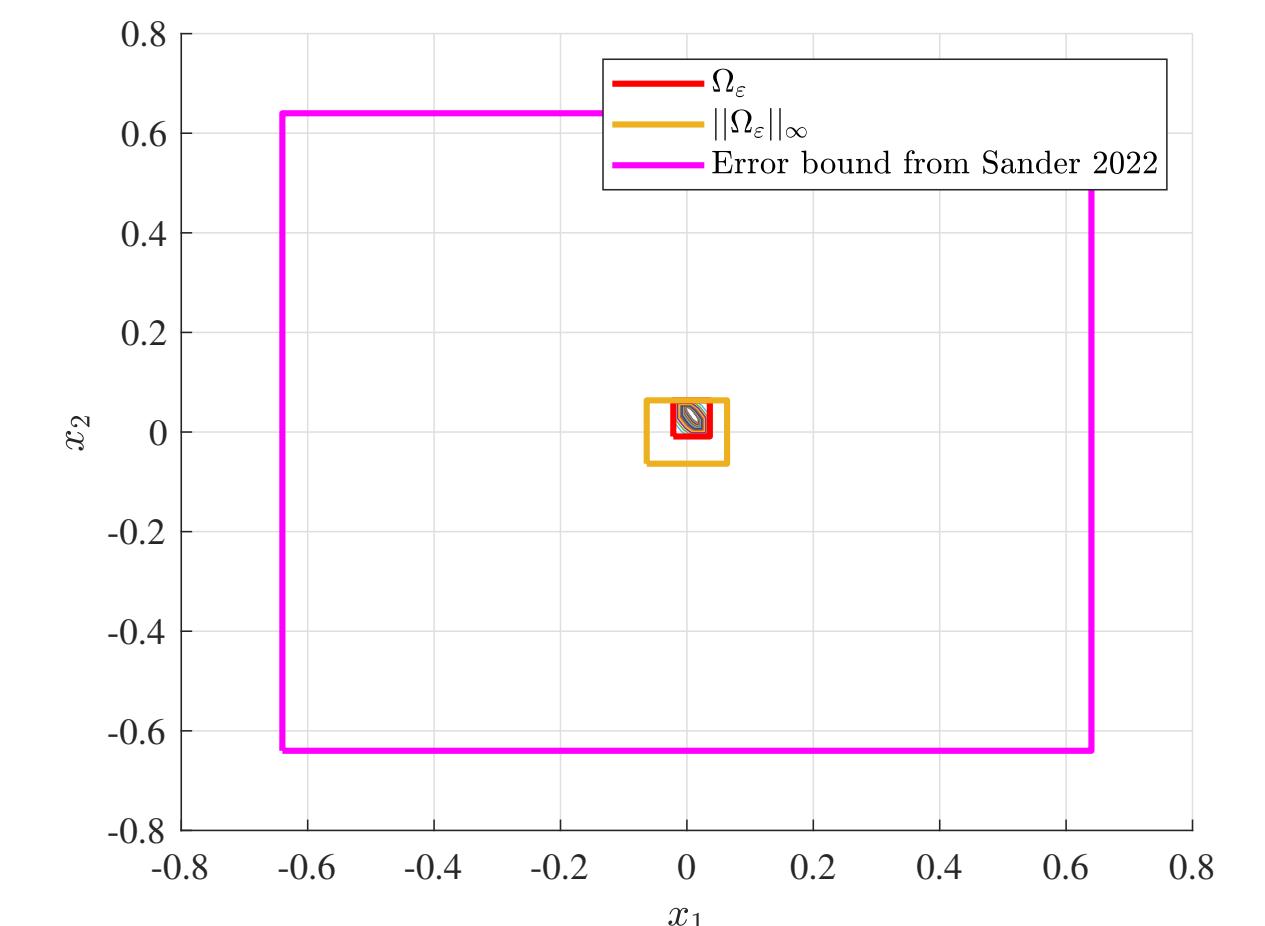
- [1] Sayed, A.S., Meyer, P.J., Ghazel, M.: Bridging neural ode and resnet: A formal error bound for safety verification. In: International Symposium on AI Verification. pp. 97–114. Springer (2025)
- [2] Sayed, A.S., Meyer, P.J., Ghazel, M.: Mixed monotonicity reachability analysis of neural ode: A trade-off between tightness and efficiency. In: NeurIPS 2025 Workshop on Symmetry and Geometry in Neural Representations (2025)

Thesis Contributions

1. R.D 1: Formal relationships between neural networks and neural ODE

(Sayed et al. 2025a)

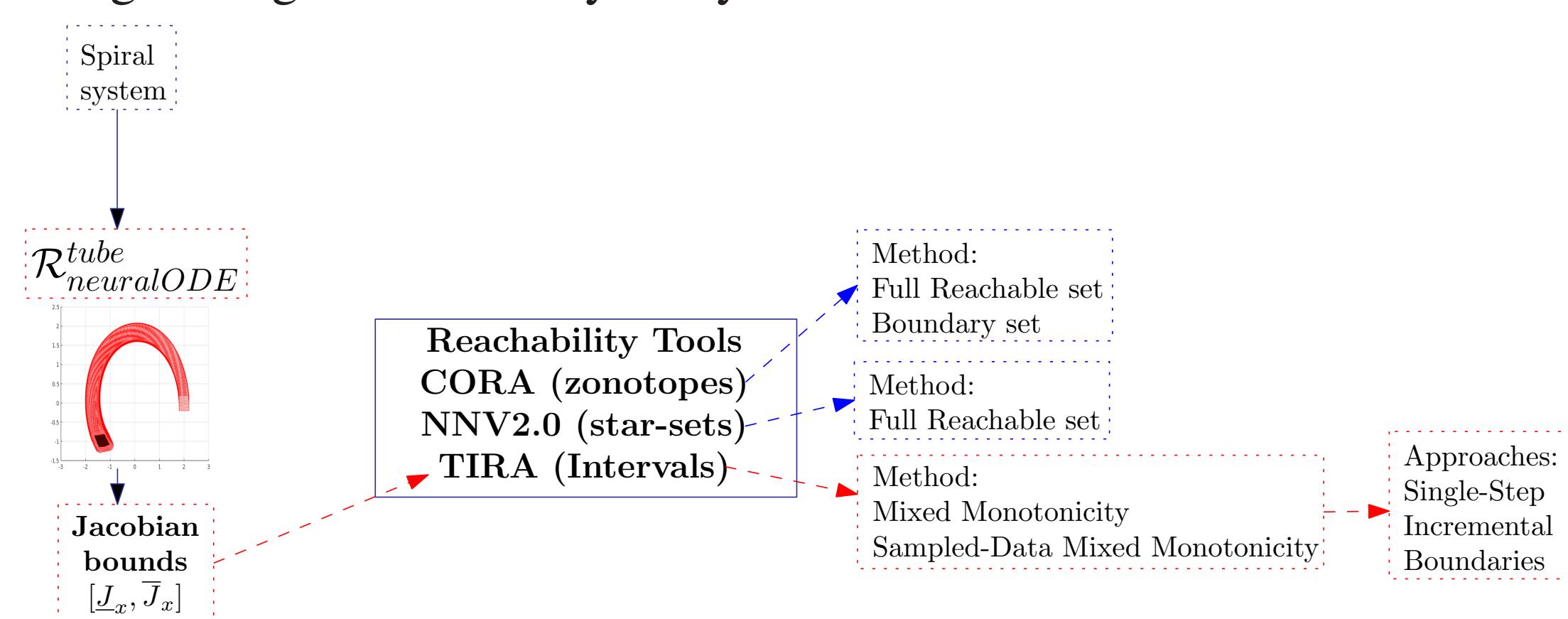
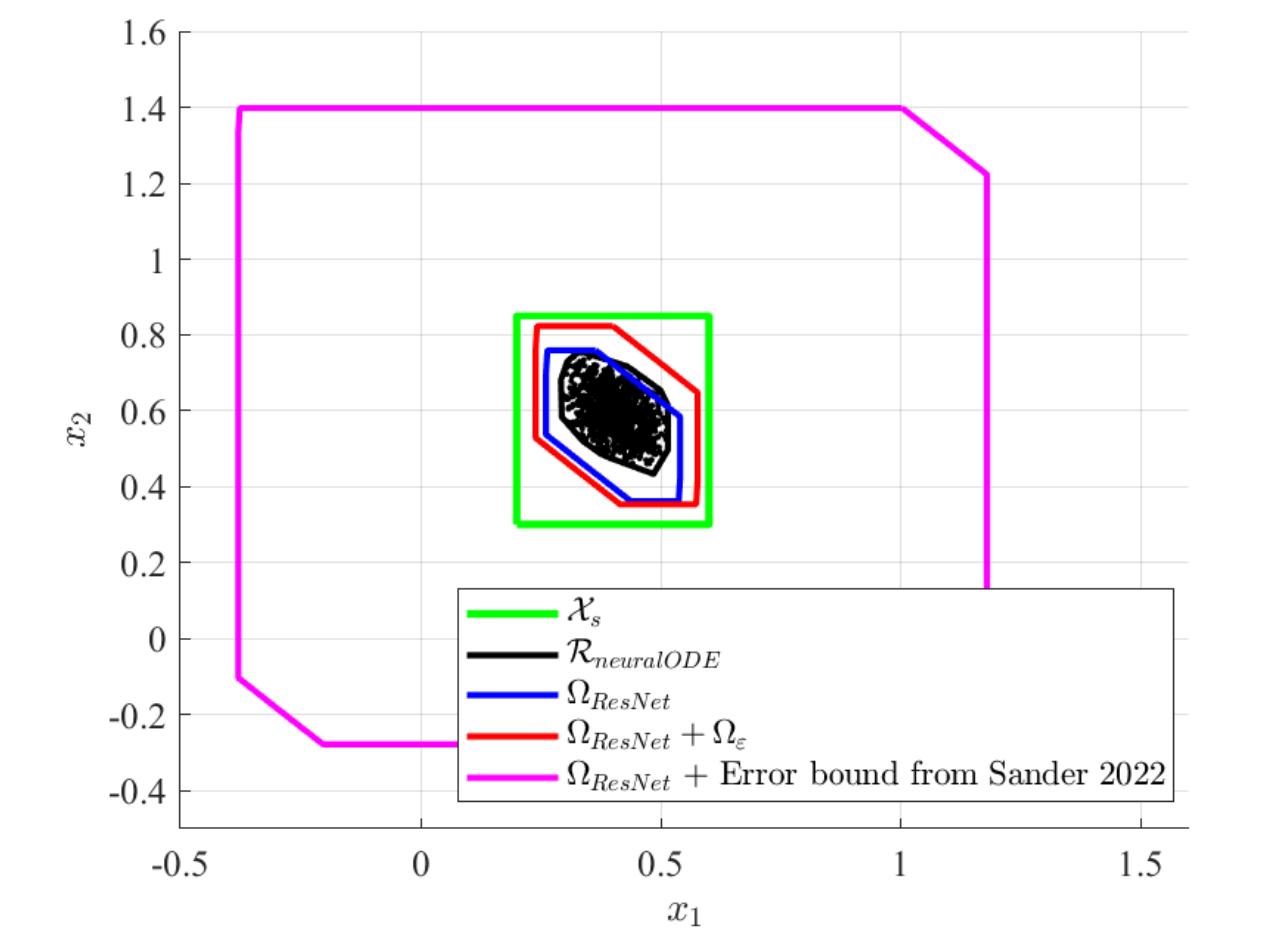
- Rigorous error bound (ε) on the approximation error between neural ODE and ResNet.
- Tighter Ω_ε over-approximation < **16 million times** \times SOTA (Sander et al. 2022).
- Verification proxy to verify one model based on the reachable set of the other $\pm \Omega_\varepsilon$.



2. R.D 2: Safety verification of neural ODE based on reachability analysis methods

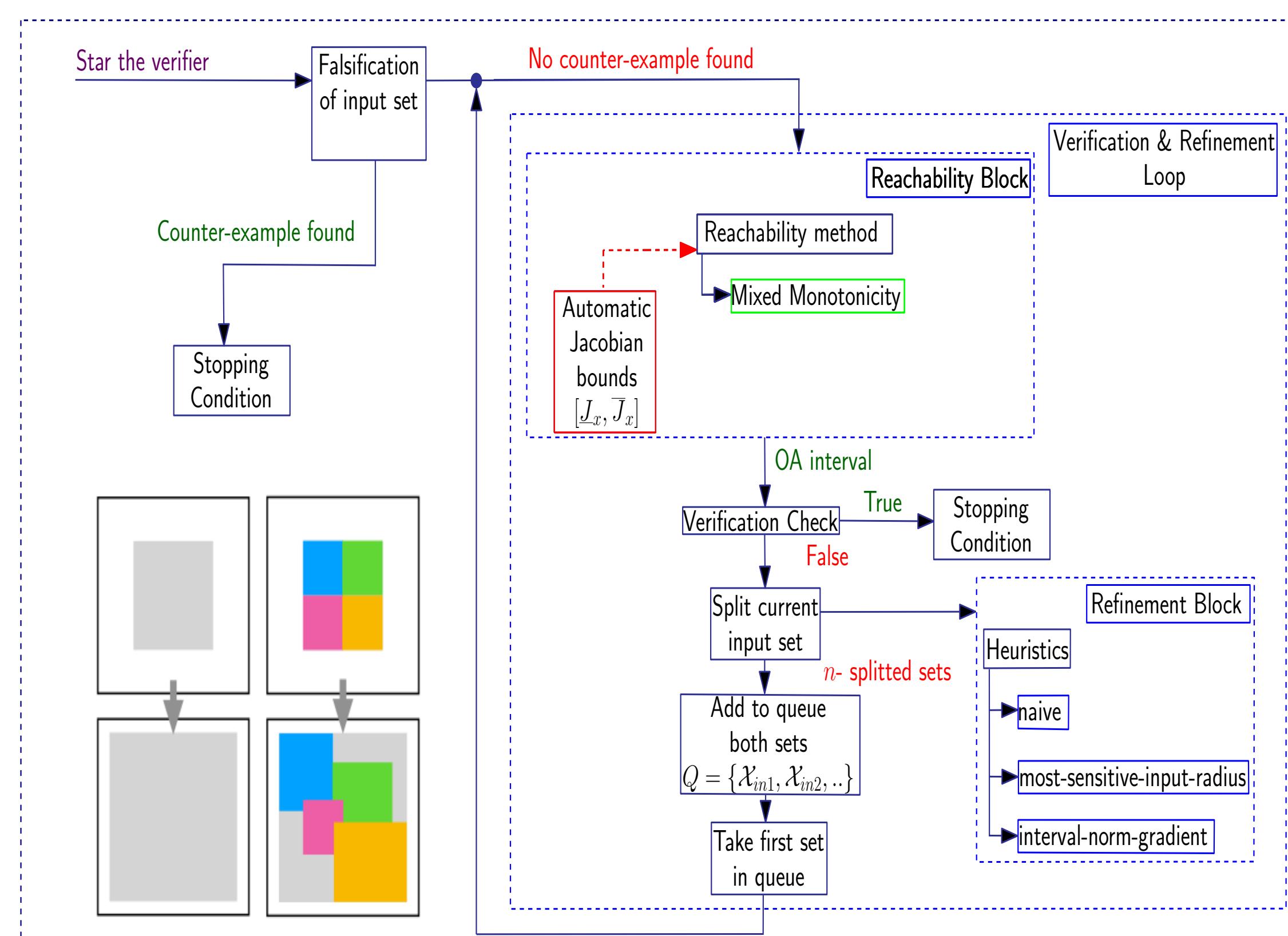
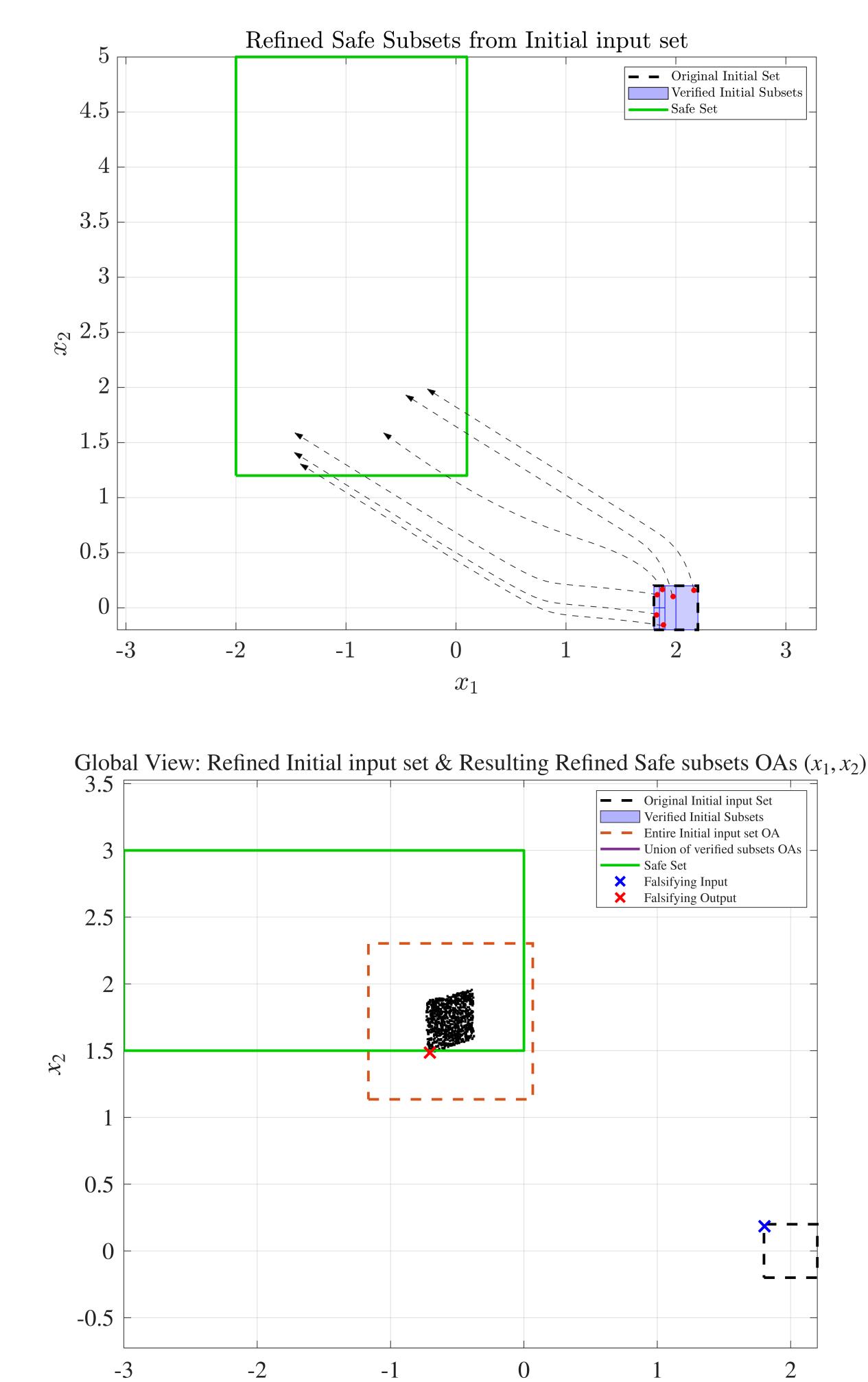
(Sayed et al. 2025b)

- Reachability analysis of neural ODE based on continuous-time mixed monotonicity.
- Light weight reachability analysis methods for scalable verification.



3. R.D 3: Verification toolbox for neural ODE

- Iterative refinement approach for neural ODE input set.
- Benchmarking with other neural ODE verification tools.



4. Verification and testing on autonomous underwater vehicles (AUVs)

- Robustness verification for ROI from in situ images.

