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Motivation & Societal Impact Thesis Contributions
 Higher Autonomy is a primary goal for transportation sys- 1. R.D 1: Formal relationships between neural networks and neural ODE .
tems of future cities. (Sayed et al. 2025a) .| —
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My research 1s motivated by the critical need to bridge the
gap between Al-based perception modules and their safety 2. R.D 2: Safety verification of neural ODE based on reachability analysis
verification when deployed 1n autonomous vehicles. methods (sayed et al. 2025b)
\ ) oq o . . . . X1 Vs X5
e Reachability analysis of neural ODE based on continuous-time mixed ]
e Neural ODE cren e o 20015 are commonly described as a monotonicity.
continuous-depth generalization sayea e a. 202500 Of a discrete e Light weight reachability analysis methods for scalable verification. .
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— We combine continuous Al/neural ODE models, 3. R.D 3: Verification toolbox for neural ODE
reachability analysis methods to analyze such mod- * Iterative refinement approach for neural ODE input set.
els, with the final objective of verifying safety of Al * Benchmarking with other neural ODE verification tools. 5 fefined Safe Subsets from Initiel imput set
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Future Research Directions
« Scalability to other architectures Extending the framework 4. Verification and testing on autonomous underwater vehicles (AUV5s)
in R.D 1 to handle more neural network architectures (e.g., * Robustness verification for ROI from in situ images.
RNN and CNN).
e Uncertainty quantification Moving from deterministic
ODE:s to Stochastic Differential Equations (SDEs) to model
sensor noise and environmental unpredictability.
* Closed-loop verification Verifying the safety of the entire
autonomous loop by integrating the neural ODE perception Dpt3
module with the vehicle’s control policy. 5y )
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