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Motivation

Motivation

Neural ODE Verification Challenges
@ Few verification tools

o Computationally intensive
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Preliminaries

Neural ODE Reachability

@ We consider the following neural ODE:

i(t) = 0 — pla(e) 1)

Definition (neural ODE Reachability)

Given an initial input set: &}, C R"™ and final time t;, we define the set of
neural ODE reachable outputs as:

Rneural ODE(Xin) = {y e R" ’ Yy = (I)(tf,u), u € Xm}

@ Where @ corresponds to solution of (1) based on IVP:

z(ty) = O(tp, x(0)) = O(ty,u)
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Preliminaries

Homeomorphism

@ Homeomorphism preserves topological characteristics

Definition (Homeomorphism)

For two sets X', ) C R™, there exists a map m(.) : X — ) which is a
homeomorphism w.r.t. X if it is a continuous bijection and the map
inverse m~1(.) : J) — X is also continuous.

Non-homeomorphic Homeomorphic
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Homeomorphism(Cont.)

Assuming that the two sets X,) C R"™ are closed and bounded. For a
homeomorphism map m(.) : X — ), m maps the boundaries of the set X

to the boundaries of the set ), and the interior of the set X to the interior
of the set ).

@ Since neural ODE are naturally invertible = Homeomorphic

Non-homeomorphic Homeomorphic
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Continuous time Mixed Monotonicity

Continuous-time neural ODE (1): & = f(z(t))

Definition (Neural ODE Mixed monotonicity)

neural ODE (1) is mixed-monotone is there exists a decomposition
g : R™ x R™ — R" such that:

@ g is increasing in the first argument: g(x, Z)
@ g is decreasing in the second argument: g(x, )
@ f is embedded in the diagonal of g: g(z,x) = f(x)

The decomposition g implies that the embedded dynamical system is

evolving in R?": : i
f-[&a]-ree

is monotone with respect to the orthant R"* x R"* in its state space.
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Preliminaries

Continuous time Mixed Monotonicity (cont.)

Requirements: The only requirement for applicability is to compute the
neural ODE Jacobian bounds

J@) = X (@)

Abdelrahman Sayed (Univ Gustave Eiffel) Mixed Monotonicity Reachability Analysis of neural ODE NeurReps 2025 7 /17



Preliminaries

Continuous time Mixed Monotonicity (cont.)

Requirements: The only requirement for applicability is to compute the

neural ODE Jacobian bounds
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Reachability Approaches

Numerical Examples

Spiral Non-linear System
@ 2 dimensional neural ODE
eI = f(l’) = Wgtanh(Wlx + bl) + b,
where:

— W1 and W5 are the weight matrices
— by and by are the bias vectors
— tanh: hyperbolic tangent AF

Fixed-Point Attractor System (FPA)
@ 5 dimensional neural ODE
e &= f(x) =Tz + Wtanh(z),
where:
— 7=-10"6
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Motivation Preliminaries Reachability Approaches Numerical illustration

Single-Step Reachability analysis
o Compute Rneural oDE from the initial time to final time ¢

@ neural ODE embedded system is solved over the full time horizon
[0,2f], with t; = 1 for Spiral system and ty = 2 for FPA system

Incremental Reachability analysis

@ Refines the single-step approach, by applying the mixed monotonicity
embedding and propagating the bounds sequentially

@ The Ryeural oDE Output of one step is used as the input for the next
step

@ This approach can yield tighter over-approximations than single-step,
but with a higher computational cost due to repeated numerical
integrations of the embedded monotone system
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Reachability Approaches

Boundary Reachability analysis
@ Compute Rpeural oDE from the boundary of X;,, rather than the entire
input set
@ This approach offers computational efficiency, as it scales linearly with
the state dimension

NeurReps 2025 10 / 17
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Boundary Reachability analysis

@ Compute Rpeural oDE from the boundary of X, rather than the entire
input set

@ This approach offers computational efficiency, as it scales linearly with
the state dimension

T1 VS. Ty
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Reachability Approaches

Boundary Reachability analysis

@ Compute Rpeural oDE from the boundary of X, rather than the entire
input set

@ This approach offers computational efficiency, as it scales linearly with
the state dimension
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Numerical illustration

Spiral Comparison over Tools and Approaches

@ Similar TIRA over-approximations: single-step and MM
& single-step and dashed boundary-based SDMM
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Numerical illustration

Spiral Comparison over Tools and Approaches (cont.)

@ CORA zonotopes and NNV2.0 star-set achieved tighter
over-approximations than TIRA's Interval approaches

Spiral FPA
Methods

r1 — T2 1 — T2 r3 — T4 T4 — s
CORA Full Reachable Set 1.61 1.33 1.11 1.13
CORA Boundaries only 1.15 1.18 0.99 1.08
NNV2.0 Full Reachable Set 1.71 2.52 8.74 2.43
TIRA (single-step) Mixed-Monotonicity 24.59 2.29 2.30 1.79
TIRA (single-step) Sampled-Data Mixed-Monotonicity 12.14 33.57 40.67 8.05
TIRA (incremental) Mixed-Monotonicity 24.59 2.29 2.30 1.79
TIRA (incremental) Sampled-Data Mixed-Monotonicity 23.24 18.92 43.64 5.50
TIRA (Boundary) Mixed-Monotonicity 12.05 2.29 2.30 1.79
TIRA (Boundary) Sampled-Data Mixed-Monotonicity 12.14 33.57 40.67 8.05
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Numerical illustration

Spiral Comparison over Tools and Approaches (cont.)

@ TIRA's single-step MM is 25 times faster than CORA and 6 times
faster than NNV2.0

Methods Spiral @ t = lsec. | FPA @ ¢ = 2sec.
CORA Full Reachable Set 19.64 13.22
CORA Boundaries only 70.83 109.1
NNV2.0 Full Reachable Set 17.25 11.98
TIRA (single-step) Mixed-Monotonicity 0.66 0.83
TIRA (single-step) Sampled-Data Mixed-Monotonicity 0.95 1.34
TIRA (incremental) Mixed-Monotonicity 63.13 25.41
TIRA (incremental) Sampled-Data Mixed-Monotonicity 111.16 48.06
TIRA (Boundary) Mixed-Monotonicity 2.84 7.06
TIRA (Boundary) Sampled-Data Mixed-Monotonicity 4.35 12.76
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Numerical illustration

FPA Comparison over Tools and Approaches

@ Similar TIRA over-approximations: single-step, and
dashed-boundary-based MM & single-step and dashed
boundary-based SDMM
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Numerical illustration

FPA Comparison over Tools and Approaches

@ Similar TIRA over-approximations: single-step, and
dashed-boundary-based MM & single-step and dashed
boundary-based SDMM
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Numerical illustration

FPA Comparison over Tools and Approaches

@ Similar TIRA over-approximations: single-step, and
dashed-boundary-based MM & single-step and dashed
boundary-based SDMM
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Numerical illustration

FPA Comparison over Tools and Approaches (cont.)

@ CORA zonotopes achieved tighter over-approximations than TIRA's

Interval approaches

Spiral FPA
Methods

r1 — T2 1 — T2 r3 — T4 T4 — s
CORA Full Reachable Set 1.61 1.33 1.11 1.13
CORA Boundaries only 1.15 1.18 0.99 1.08
NNV2.0 Full Reachable Set 1.71 2.52 8.74 2.43
TIRA (single-step) Mixed-Monotonicity 24.59 2.29 2.30 1.79
TIRA (single-step) Sampled-Data Mixed-Monotonicity 12.14 33.57 40.67 8.05
TIRA (incremental) Mixed-Monotonicity 24.59 2.29 2.30 1.79
TIRA (incremental) Sampled-Data Mixed-Monotonicity 23.24 18.92 43.64 5.50
TIRA (Boundary) Mixed-Monotonicity 12.05 2.29 2.30 1.79
TIRA (Boundary) Sampled-Data Mixed-Monotonicity 12.14 33.57 40.67 8.05
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Numerical illustration

FPA Comparison over Tools and Approaches (cont.)

@ TIRA's single-step MM is 131 times faster than CORA and 14 times
faster than NNV2.0

Methods Spiral @ t = 1sec. | FPA @ ¢ = 2sec.
CORA Full Reachable Set 19.64 13.22
CORA Boundaries only 70.83 109.1
NNV2.0 Full Reachable Set 17.25 11.98
TIRA (single-step) Mixed-Monotonicity 0.66 0.83
TIRA (single-step) Sampled-Data Mixed-Monotonicity 0.95 1.34
TIRA (incremental) Mixed-Monotonicity 63.13 25.41
TIRA (incremental) Sampled-Data Mixed-Monotonicity 111.16 48.06
TIRA (Boundary) Mixed-Monotonicity 2.84 7.06
TIRA (Boundary) Sampled-Data Mixed-Monotonicity 4.35 12.76
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Numerical illustration

Conclusions

Interval-based reachability method for neural ODE
o Lightweight neural ODE reachability analysis alternative
@ Sound over-approximations, albeit at the cost of tightness

Future Work
@ Extend boundary-based reachability approach to include incremental
method
@ Partitioning the initial input set into smaller subsets

@ Incorporate the framework into a verifier to check safety properties in
neural ODE

Contact: abdelrahman.ibrahimQuniv-eiffel.fr
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