

# Mixed Monotonicity Reachability Analysis of Neural ODE: A Trade-Off Between Tightness and Efficiency

**Abdelrahman Sayed Sayed**    Pierre-Jean Meyer    Mohamed Ghazel

Université Gustave Eiffel, COSYS-ESTAS, F-59657 Villeneuve d'Ascq, France

December 7<sup>th</sup> 2025, San Diego, California

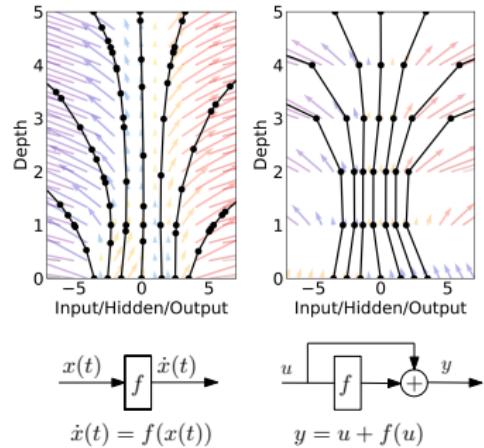


NeurReps 2025

# Motivation

## Neural ODE Verification Challenges

- Few verification tools
- Computationally intensive

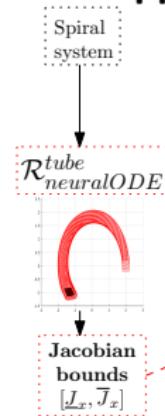


# Motivation

## Neural ODE Verification Challenges

- Few verification tools
- Computationally intensive

## Proposed Approaches



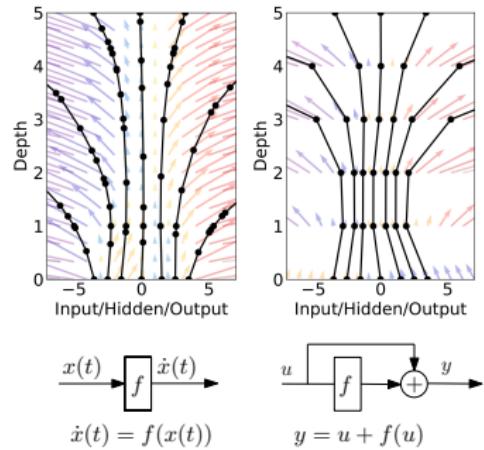
Reachability Tools  
 CORA (zonotopes)  
 NNV2.0 (star-sets)  
 TIRA (Intervals)

Method:  
 Full Reachable set  
 Boundary set

Method:  
 Full Reachable set

Method:  
 Mixed Monotonicity  
 Sampled-Data Mixed Monotonicity

Approaches:  
 Single-Step  
 Incremental  
 Boundaries



$$\dot{x}(t) = f(x(t))$$

$$y = u + f(u)$$

# Neural ODE Reachability

- We consider the following neural ODE:

$$\dot{x}(t) = \frac{dx(t)}{dt} = f(x(t)) \quad (1)$$

## Definition (neural ODE Reachability)

Given an initial input set:  $\mathcal{X}_{in} \subseteq \mathbb{R}^n$  and final time  $t_f$ , we define the set of neural ODE reachable outputs as:

$$\mathcal{R}_{\text{neural ODE}}(\mathcal{X}_{in}) = \{y \in \mathbb{R}^n \mid y = \Phi(t_f, u), u \in \mathcal{X}_{in}\}$$

- Where  $\Phi$  corresponds to solution of (1) based on IVP:

$$x(t_f) = \Phi(t_f, x(0)) = \Phi(t_f, u)$$

# Homeomorphism

- Homeomorphism preserves topological characteristics

## Definition (Homeomorphism)

For two sets  $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{R}^n$ , there exists a map  $m(.) : \mathcal{X} \rightarrow \mathcal{Y}$  which is a homeomorphism w.r.t.  $\mathcal{X}$  if it is a continuous bijection and the map inverse  $m^{-1}(.) : \mathcal{Y} \rightarrow \mathcal{X}$  is also continuous.



Non-homeomorphic



Homeomorphic

# Homeomorphism(Cont.)

## Lemma

Assuming that the two sets  $\mathcal{X}, \mathcal{Y} \subseteq \mathbb{R}^n$  are closed and bounded. For a homeomorphism map  $m(.) : \mathcal{X} \rightarrow \mathcal{Y}$ ,  $m$  maps the boundaries of the set  $\mathcal{X}$  to the boundaries of the set  $\mathcal{Y}$ , and the interior of the set  $\mathcal{X}$  to the interior of the set  $\mathcal{Y}$ .

- Since neural ODE are naturally invertible  $\Rightarrow$  Homeomorphic



Non-homeomorphic



Homeomorphic

# Continuous time Mixed Monotonicity

Continuous-time neural ODE (1):  $\dot{x} = f(x(t))$

## Definition (Neural ODE Mixed monotonicity)

neural ODE (1) is mixed-monotone is there exists a decomposition  $g : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n$  such that:

- $g$  is increasing in the first argument:  $g(x, \hat{x})$
- $g$  is decreasing in the second argument:  $g(x, \hat{x})$
- $f$  is embedded in the diagonal of  $g$ :  $g(x, x) = f(x)$

The decomposition  $g$  implies that the embedded dynamical system is evolving in  $\mathbb{R}^{2n_x}$ :

$$\begin{bmatrix} \dot{x} \\ \dot{\hat{x}} \end{bmatrix} = \begin{bmatrix} g(x, \hat{x}) \\ g(\hat{x}, x) \end{bmatrix} = h(x, \hat{x})$$

is monotone with respect to the orthant  $\mathbb{R}_+^{n_x} \times \mathbb{R}_-^{n_x}$  in its state space.

# Continuous time Mixed Monotonicity (cont.)

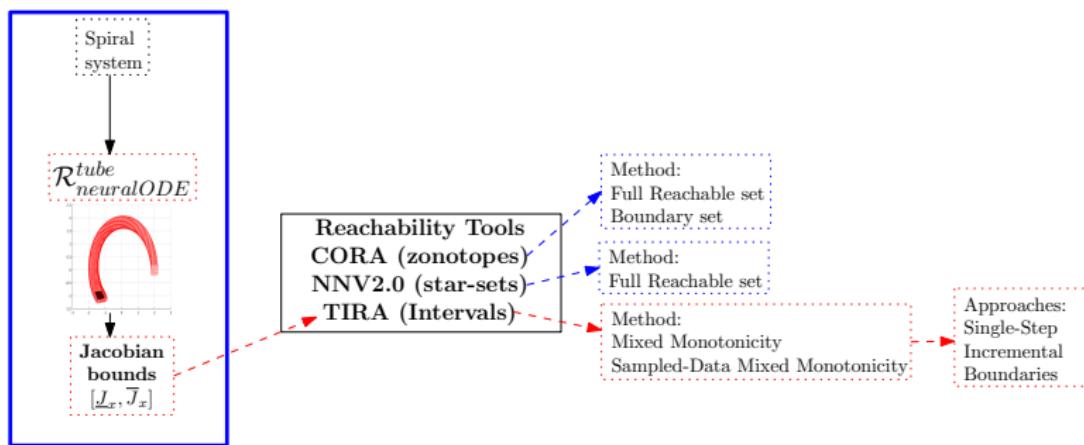
**Requirements:** The only requirement for applicability is to compute the neural ODE Jacobian bounds

$$J(x) = \frac{\partial f}{\partial x}(x)$$

# Continuous time Mixed Monotonicity (cont.)

**Requirements:** The only requirement for applicability is to compute the neural ODE Jacobian bounds

$$J(x) = \frac{\partial f}{\partial x}(x)$$



# Numerical Examples

## Spiral Non-linear System

- 2 dimensional neural ODE
- $\dot{x} = f(x) = W_2 \tanh(W_1 x + b_1) + b_2$ ,  
where:
  - $W_1$  and  $W_2$  are the weight matrices
  - $b_1$  and  $b_2$  are the bias vectors
  - $\tanh$ : hyperbolic tangent AF

## Fixed-Point Attractor System (FPA)

- 5 dimensional neural ODE
- $\dot{x} = f(x) = \tau x + W \tanh(x)$ ,  
where:
  - $\tau = -10^{-6}$

## Single-Step Reachability analysis

- Compute  $\mathcal{R}_{\text{neural ODE}}$  from the initial time to final time  $t_f$
- neural ODE embedded system is solved over the full time horizon  $[0, t_f]$ , with  $t_f = 1$  for Spiral system and  $t_f = 2$  for FPA system

## Incremental Reachability analysis

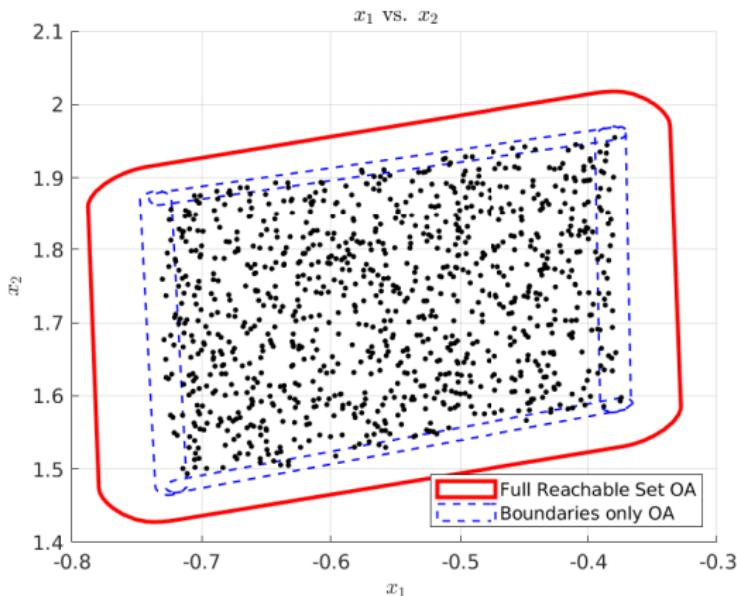
- Refines the single-step approach, by applying the mixed monotonicity embedding and propagating the bounds sequentially
- The  $\mathcal{R}_{\text{neural ODE}}$  output of one step is used as the input for the next step
- This approach can yield tighter over-approximations than single-step, but with a higher computational cost due to repeated numerical integrations of the embedded monotone system

## Boundary Reachability analysis

- Compute  $\mathcal{R}_{\text{neural ODE}}$  from the boundary of  $\mathcal{X}_{in}$  rather than the entire input set
- This approach offers computational efficiency, as it scales linearly with the state dimension

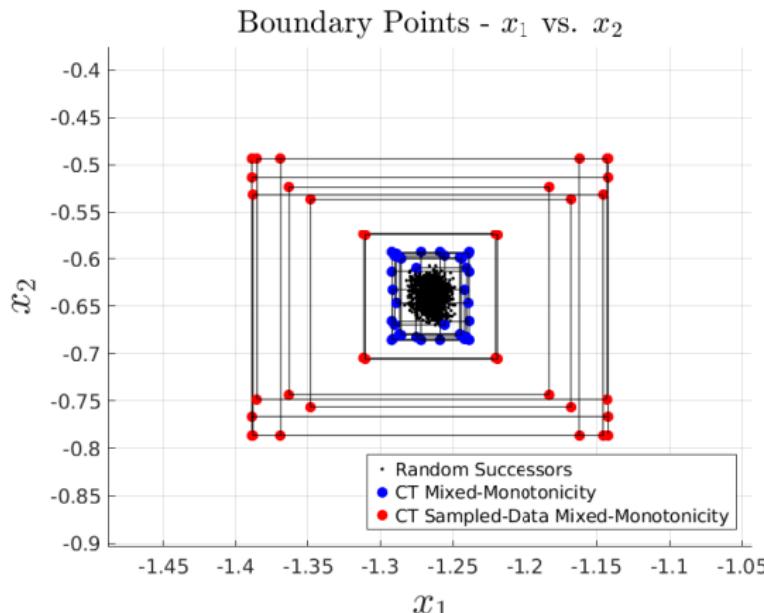
## Boundary Reachability analysis

- Compute  $\mathcal{R}_{\text{neural ODE}}$  from the boundary of  $\mathcal{X}_{in}$  rather than the entire input set
- This approach offers computational efficiency, as it scales linearly with the state dimension



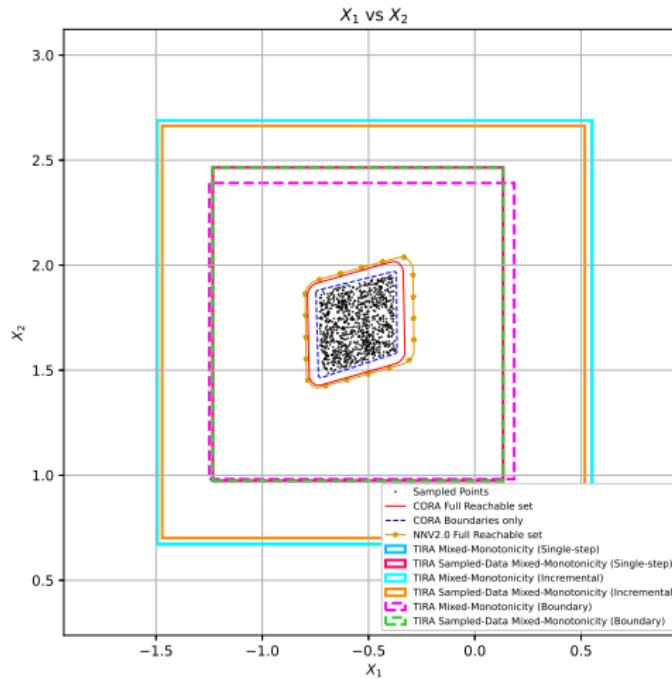
## Boundary Reachability analysis

- Compute  $\mathcal{R}_{\text{neural ODE}}$  from the boundary of  $\mathcal{X}_{in}$  rather than the entire input set
- This approach offers computational efficiency, as it scales linearly with the state dimension



# Spiral Comparison over Tools and Approaches

- Similar TIRA over-approximations: **single-step** and **incremental** MM & **single-step** and **dashed boundary**-based SDMM



# Spiral Comparison over Tools and Approaches (cont.)

- CORA zonotopes and NNV2.0 star-set achieved tighter over-approximations than TIRA's Interval approaches

| Methods                                            | Spiral      | FPA         |             |             |
|----------------------------------------------------|-------------|-------------|-------------|-------------|
|                                                    | $x_1 - x_2$ | $x_1 - x_2$ | $x_3 - x_4$ | $x_4 - x_5$ |
| CORA Full Reachable Set                            | 1.61        | 1.33        | 1.11        | 1.13        |
| CORA Boundaries only                               | 1.15        | 1.18        | 0.99        | 1.08        |
| NNV2.0 Full Reachable Set                          | 1.71        | 2.52        | 8.74        | 2.43        |
| TIRA (single-step) Mixed-Monotonicity              | 24.59       | 2.29        | 2.30        | 1.79        |
| TIRA (single-step) Sampled-Data Mixed-Monotonicity | 12.14       | 33.57       | 40.67       | 8.05        |
| TIRA (incremental) Mixed-Monotonicity              | 24.59       | 2.29        | 2.30        | 1.79        |
| TIRA (incremental) Sampled-Data Mixed-Monotonicity | 23.24       | 18.92       | 43.64       | 5.50        |
| TIRA (Boundary) Mixed-Monotonicity                 | 12.05       | 2.29        | 2.30        | 1.79        |
| TIRA (Boundary) Sampled-Data Mixed-Monotonicity    | 12.14       | 33.57       | 40.67       | 8.05        |

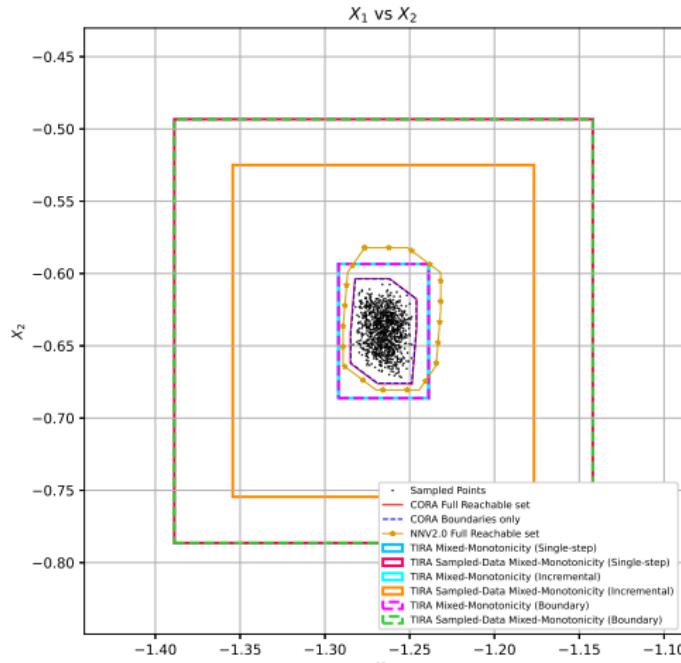
# Spiral Comparison over Tools and Approaches (cont.)

- TIRA's **single-step** MM is **25 times** faster than CORA and **6 times** faster than NNV2.0

| Methods                                            | Spiral @ $t = 1\text{sec.}$ | FPA @ $t = 2\text{sec.}$ |
|----------------------------------------------------|-----------------------------|--------------------------|
| CORA Full Reachable Set                            | 19.64                       | 13.22                    |
| CORA Boundaries only                               | 70.83                       | 109.1                    |
| NNV2.0 Full Reachable Set                          | 17.25                       | 11.98                    |
| TIRA (single-step) Mixed-Monotonicity              | 0.66                        | 0.83                     |
| TIRA (single-step) Sampled-Data Mixed-Monotonicity | 0.95                        | 1.34                     |
| TIRA (incremental) Mixed-Monotonicity              | 63.13                       | 25.41                    |
| TIRA (incremental) Sampled-Data Mixed-Monotonicity | 111.16                      | 48.06                    |
| TIRA (Boundary) Mixed-Monotonicity                 | 2.84                        | 7.06                     |
| TIRA (Boundary) Sampled-Data Mixed-Monotonicity    | 4.35                        | 12.76                    |

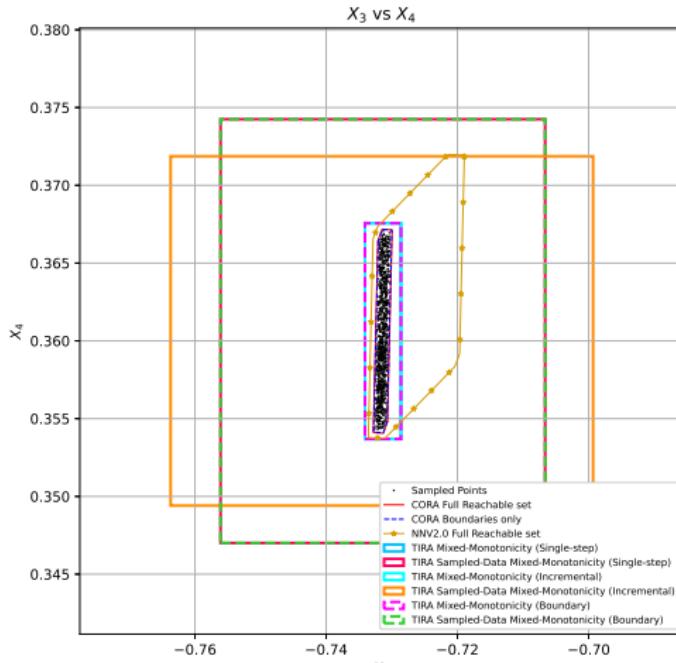
# FPA Comparison over Tools and Approaches

- Similar TIRA over-approximations: **single-step**, **incremental** and **dashed-boundary**-based MM & **single-step** and **dashed boundary**-based SDMM



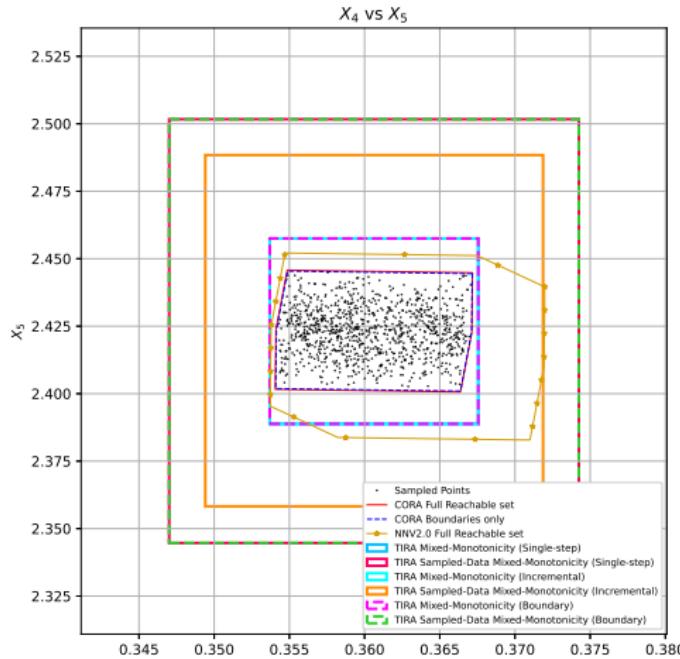
# FPA Comparison over Tools and Approaches

- Similar TIRA over-approximations: **single-step**, **incremental** and **dashed-boundary**-based MM & **single-step** and **dashed boundary**-based SDMM



# FPA Comparison over Tools and Approaches

- Similar TIRA over-approximations: **single-step**, **incremental** and **dashed-boundary**-based MM & **single-step** and **dashed boundary**-based SDMM



# FPA Comparison over Tools and Approaches (cont.)

- CORA zonotopes achieved tighter over-approximations than TIRA's Interval approaches

| Methods                                            | Spiral      | FPA         |             |             |
|----------------------------------------------------|-------------|-------------|-------------|-------------|
|                                                    | $x_1 - x_2$ | $x_1 - x_2$ | $x_3 - x_4$ | $x_4 - x_5$ |
| CORA Full Reachable Set                            | 1.61        | 1.33        | 1.11        | 1.13        |
| CORA Boundaries only                               | 1.15        | 1.18        | 0.99        | 1.08        |
| NNV2.0 Full Reachable Set                          | 1.71        | 2.52        | 8.74        | 2.43        |
| TIRA (single-step) Mixed-Monotonicity              | 24.59       | 2.29        | 2.30        | 1.79        |
| TIRA (single-step) Sampled-Data Mixed-Monotonicity | 12.14       | 33.57       | 40.67       | 8.05        |
| TIRA (incremental) Mixed-Monotonicity              | 24.59       | 2.29        | 2.30        | 1.79        |
| TIRA (incremental) Sampled-Data Mixed-Monotonicity | 23.24       | 18.92       | 43.64       | 5.50        |
| TIRA (Boundary) Mixed-Monotonicity                 | 12.05       | 2.29        | 2.30        | 1.79        |
| TIRA (Boundary) Sampled-Data Mixed-Monotonicity    | 12.14       | 33.57       | 40.67       | 8.05        |

# FPA Comparison over Tools and Approaches (cont.)

- TIRA's **single-step** MM is **131 times** faster than CORA and **14 times** faster than NNV2.0

| Methods                                            | Spiral @ $t = 1\text{sec.}$ | FPA @ $t = 2\text{sec.}$ |
|----------------------------------------------------|-----------------------------|--------------------------|
| CORA Full Reachable Set                            | 19.64                       | 13.22                    |
| CORA Boundaries only                               | 70.83                       | 109.1                    |
| NNV2.0 Full Reachable Set                          | 17.25                       | 11.98                    |
| TIRA (single-step) Mixed-Monotonicity              | 0.66                        | 0.83                     |
| TIRA (single-step) Sampled-Data Mixed-Monotonicity | 0.95                        | 1.34                     |
| TIRA (incremental) Mixed-Monotonicity              | 63.13                       | 25.41                    |
| TIRA (incremental) Sampled-Data Mixed-Monotonicity | 111.16                      | 48.06                    |
| TIRA (Boundary) Mixed-Monotonicity                 | 2.84                        | 7.06                     |
| TIRA (Boundary) Sampled-Data Mixed-Monotonicity    | 4.35                        | 12.76                    |

# Conclusions

## Interval-based reachability method for neural ODE

- Lightweight neural ODE reachability analysis alternative
- Sound over-approximations, albeit at the cost of tightness

## Future Work

- Extend boundary-based reachability approach to include incremental method
- Partitioning the initial input set into smaller subsets
- Incorporate the framework into a verifier to check safety properties in neural ODE

Contact: [abdelrahman.ibrahim@univ-eiffel.fr](mailto:abdelrahman.ibrahim@univ-eiffel.fr)

